A Proof of the Pythagorean Theorem From Heron's Formula

Let the sides of a triangle have lengths a, b and c. Introduce the semiperimeter p = (a + b + c)/2 and the area A. Then Heron's formula asserts that

A2 = p(p - a)(p - b)(p - c)

W.Dunham analyzes the original Heron's proof in his Journey through Genius.

For the right triangle with hypotenuse c, we have A = ab/2. We'll modify the right hand side of the formula by noting that

p - a = (- a + b + c)/2, p - b = (a - b + c)/2, p - c = (a + b - c)/2

It takes a little algebra to show that

(a + b + c)(- a + b + c)(a - b + c)(a + b - c)
2a2b2 + 2a2c2 + 2b2c2 - (a4 + b4 + c4)

For the right triangle, this expression is equal to 16A = 4a2b2. So we have

4a2b2= 2a2b2 + 2a2c2 + 2b2c2 - (a4 + b4 + c4)

Taking all terms to the left side and grouping them yields

(a4 + 2a2b2 + b4) - 2a2c2 - 2b2c2 + c4 = 0

With a little more effort

(a2 + b2)2 - 2c2(a2 + b2) + c4 = 0

And finally

[(a2 + b2)2 - c2]2 = 0

Remark

For a quadrilateral with sides a,b,c and d inscribed in a circle there exists a generalization of Heron's formula. In this case, the semiperimeter is defined as p = (a + b + c + d)/2. Then the following formula holds

A2 = (p - a)(p - b)(p - c)(p - d)

Since any triangle is inscribable in a circle, we may let one side, say d, shrink to 0. This leads to Heron's formula.

References

  1. W.Dunham, Journey through Genius, Penguin Books, 1991

Copyright © 1996-1998 Alexander Bogomolny